Programming with Python
EOAS Software Carpentry Workshop

September 21st, 2016

15 it v
%

e
\
\\ A
)

Yty 7 T

'z

v
y
iy

2
"

K4
o o

3

?

YOURE FLYING

dehz £
AP gebz £
= .mfrWImm %3
o L

b BEE mm
w - o (]
Imw Jmmm 55

£

£ o<
fw/w,.mwumw 3
(Ey BEo3gh 2¢
SEF B2l b3
ZEZ mmm.m,wn
e d
I_WW mwN..A

O

/

T LEARNED IT LAST

!

NIGHT EVERYTHING
HELLO WORLD 1S JusT
print "Hello, world

15 S0 SIMPLE!

https://xked.com /353

Getting started

For our Python introduction we're going to pretend to be a researcher
studying inflammation in patients who have been given a new treatment
for arthritis.

You need to download some files to follow this lesson:

1.

4.

Make a new folder in your Desktop called
python-novice-inflammation.

Download python-novice-inflammation-data.zip and move the file to
this folder.

If it's not unzipped yet, double-click on it to unzip it. You should
end up with a new folder called data.

You can access this folder from the Unix shell with:

$ cd && cd Desktop/python-novice-inflammation/data

Launching Jupyter Notebook

There are several ways that we can use Python. We're going to start
with a tool called Jupyter Notebook that runs in the browser. In a shell
window enter these commands:

$ cd
$ cd Desktop/python-novice-inflammation/data
$ jupyter notebook

The shell window is now running a local web server for you. Don't close
it. You will need to open another shell window to do other command line
things. Your browser should open to an " Jupyter: Notebook™” page
showing a list of directories.

Analyzing patient data

o e

Explain what a library is, and what libraries are used for.
Load a Python library and use the things it contains.
Read tabular data from a file into a program.

Assign values to variables.

Select individual values and subsections from data.

import numpy e type(data)
numpy.loadtxt(fname=

delimiter=) ¢ data.shape

weight-kg =55 o data[0,0], data[0:1,0:1]
print('weight in kg:',

weight kg) o data[0:10:2,1]
weight_Ib = 2.2 *

weight_kg e datal[:3,36:]

Analyzing Patient Data cont'd

6. Perform operations on arrays of data.

7. Display simple graphs.

e data.mean() .

e data.std() pyplot.plot(ave_inflammation)
o data.mean(axis=0) e import matplotlib import

e %matplotlib inline pyplot as plt

e from matplotlib import

" e plt.subplot(1,3,1)
pyplo

e pyplot.imshow(data) * plt.ylabel("average’)

e pyplot.show() e plt.show()

Operations across an axis

Day Day Day Patient Day Day Day
0 1 2 Max 0 1 2
Patient 0 Patient 0
Patient 1 Patient 1
Patient 2 Patient 2
Patient 3 Patient 3
A 4

Max for each patient

data.max(axis=1) Daily
Avg

Average for each day

data.mean(axis=0)

Exercise

Create a single plot showing 1) the mean for each day and 2) the
mean + 1 standard deviation for each day and 3) the mean - 1
standard deviation for each day.

Repeating actions with loops

Explain what a for loop does.
Correctly write for loops to repeat simple calculations.

Trace changes to a loop variable as the loop runs.

il A

Trace changes to other variables as they are updated by a for
loop.

e for char in word: e len('aeiou’)

Python has a built-in function called range that creates a list of
numbers: range(3) produces [0, 1, 2], range(2, 5) produces [2, 3,
4], and range(2, 10, 3) produces [2, 5, 8]. Using range, write a
loop that prints the first three natural numbers:

Python has a built-in function called range that creates a list of
numbers: range(3) produces [0, 1, 2], range(2, 5) produces [2, 3,
4], and range(2, 10, 3) produces [2, 5, 8]. Using range, write a
loop that prints the first three natural numbers:

One solution:
for num in range(1,4,1):
print (num)

Exponentiation is built into Python:

print (5%*3)
125

Write a loop that calculates the same result using multiplication
(without exponentiation).

Exponentiation is built into Python:

print (56%*3)
125

Write a loop that calculates the same result using multiplication
(without exponentiation)
One possible answer:
ans=1
for ii in range(1,4,1):
ans=ans*5
print (ans)

Storing Multiple Values in Lists

Learning Goals

1.
2.

Explain what a list is.

Create and index lists of simple values.

Lesson Commands

odds = [1, 3, 5, 7]
print (odds[0], odds[-1])
for number in odds:
names[1] = ’Darwin’
odds.append(11)

del odds[0]

odds.reverse()

Exercise

Turn a String into a List

Use a for loop to convert the string *hello’ into a list of letters:
[)h), :e), 11;’ JlJ’ 70>]

Hint: You can create an empty list like this:

my_list = []

Storing Multiple Values in Lists

Learning Goals

1.
2.

Explain what a list is.

Create and index lists of simple values.

Lesson Commands

odds = [1, 3, 5, 7]
print (odds[0], odds[-1])
for number in odds:
names[1] = ’Darwin’
odds.append(11)

del odds[0]

odds.reverse()

Analyzing Data from Multiple Files

Learning Goals
1. Use a library function to get a list of filenames that match a
simple wildcard pattern.

2. Use a for loop to process multiple files.

Lesson Commands
e import glob
e filenames = glob.glob(’*.csv’)

e filenames[0:3]

Making Choices

Learning Goals

1. Write conditional statements including ‘if*, ‘elif', and ‘else’
branches.

2. Correctly evaluate expressions containing ‘and’ and ‘or’.

Lesson Commands

e if num > 100:
e else:

e if num > O:

e elif num ==
e and

® or

Python if /else Flowchart

True

print 'greater’

False

print 'not greater’

Y

print 'done’

Exercise

How Many Paths?

What will be printed if you run this code:
if 4 > b:
print(’A’)
elif 4 ==
print(’B’)
elif 4 < 5:
print(’°C’)

1. A

2. B

3. C

4. Band C

Why did you pick your answer?

Exercise

Close Enough

Work with your partner to write some code that will print True if
the value of variable a is within 10% of the value of variable b and
False otherwise. Test your code for positive values, negative
values, and values that span zero.

Making Choices

Learning Goals

1. Write conditional statements including ‘if*, ‘elif', and ‘else’
branches.

2. Correctly evaluate expressions containing ‘and’ and ‘or’.

Lesson Commands

e if num > 100:
e else:

e if num > O:

e elif num ==
e and

® or

Creating Functions - Defining a Function

Learning Goals

1. Explain why we should divide programs into small,
single-purpose functions.

2. Define a function that takes parameters.

3. Return a value from a function.

Example Code

e def fahr_to_kelvin(temp):
return ((temp - 32) * (5/9)) + 273.15
e def kelvin_to_celsius(temp):
return temp - 273.15
e def fahr_to_celsius(temp):
temp_k
result

fahr_to_kelvin(temp)
kelvin_to_celsius(temp_k)
return result

Exercise

Write a function called analyze that takes a filename as a
parameter and displays the three graphs produced in the previous
lesson, i.e., analyze('inflammation-01.csv') should produce the
graphs already shown, while analyze(’'inflammation-02.csv') should
produce corresponding graphs for the second data set. Hint: a
function can just “do” something. It doesn't necessarily need to
return anything.

Solution

def analyze(filename) :
data = np.loadtxt(fname=filename, delimiter=’,’)
fig = plt.figure(figsize=(10.0, 3.0))

axesl = fig.add_subplot(1l, 3, 1)
axes2 = fig.add_subplot(1l, 3, 2)
axes3 = fig.add_subplot(1l, 3, 3)

axesl.set_ylabel(’average’)
axesl.plot(data.mean(axis=0))

axes2.set_ylabel (’max’)
axes2.plot(data.max(axis=0))

axes3.set_ylabel (’min’)
axes3.plot(data.min(axis=0))

fig.tight_layout()
plt.show(fig)

Defining a Function

def detect_problems(filename) :
data = np.loadtxt(fname=filename, delimiter=’,’)

if data.max(axis=0)[0] == 0 and data.max(axis=0) [20] =:
print (’Suspicious looking maxima!’)

elif data.min(axis=0).sum() ==
print (°’Minima add up to zero!’)

else:
print (’Seems OK!’)

Testing and Documentation
Learning Goal

3. Test and debug a function.

Example Code

e def centre(data, desired):
return (data - data.mean()) + desired

e z = numpy.zeros((2,2))

e print(centre(z, 3))

print(data.std() - centred.std())

e def center(data, desired):
’?’Return a new array containing the original data
centered around the desired value.’’’
return (data - data.mean()) + desired

help(centre)

Defining Defaults

Learning Goals

6. Set default values for function parameters.

Example Code

e def center(data, desired = 0):
e def display(a=1, b=2, c=3):
print(’a:’, a, ’b:’, b, ’c:’, c)
print(’no parameters:’)
display()
print(’one parameter:’)
display(55)
print (’two parameters:’)
display (55, 66)
e help(numpy.loadtxt)

Exercise

“Adding” two strings produces their concatenation: ’a’ + ’b’ is
>ab’. Write a function called fence that takes two parameters
called original and wrapper and returns a new string that has the
wrapper character at the beginning and end of the original. A call
to your function should look like this:

print (fence(’name’, ’*’))
*name

Exercise

“Adding” two strings produces their concatenation: ’a’ + ’b’ is
’ab’. Write a function called fence that takes two parameters
called original and wrapper and returns a new string that has the
wrapper character at the beginning and end of the original. A call
to your function should look like this:

print (fence(’name’, ’*’))
*name

Solution
def fence(original, wrapper):
‘‘‘Returns a string with charcter wrapper added to the

beginning and end of string original. ‘¢

return wrapper + original + wrapper

Tracebacks and Exceptions

Learning Goals

1. Read a traceback, and determine the following relevant pieces
of information:
» The file, function, and line number on which the error occurred
» The type of the error
» The error message

2. Describe the types of situations in which the following errors
occur:
» SyntaxError and IndentationError
» NameError
» IndexError
» FileNotFoundError

Exercise

Does this code raise an exception? If so, what is the name of the
exception?

for x in range(10, -10, -1):
print(’inverse of’, x, ’is’, 1/x)

Can you modify the code so that it does what is intended, but
avoids the exception?

Try /Except Blocks

Learning Goals

1. Write error handling Python code using try and except
statements.

Lesson Commands

try:

something that might go wrong
except SomeError:

handle the error

Command-line programs

Learning goals

1. Use the values of command-line arguments in a program.
2. Handle flags and files separately in a command-line program.

3. Read data from standard input in a program so that it can be
used in a pipeline.

Commands and functions
sys.version

sys.argv

sys.stdin

Switching to shell commands

$ in front of a command that tells you to run that command in the
shell rather than the Python interpreter

e Rewrite readings.py so that it uses -n, -m, and -x instead
of —-min, --mean, and --max respectively. Is the code easier
to read? Is the program easier to understand?

e Separately, modify readings.py so that if no action is given
it displays the means of the data.

