
Programming with Python
EOAS Software Carpentry Workshop

September 21st, 2016

https://xkcd.com/353

Getting started

For our Python introduction we’re going to pretend to be a researcher
studying inflammation in patients who have been given a new treatment
for arthritis.

You need to download some files to follow this lesson:

1. Make a new folder in your Desktop called
python-novice-inflammation.

2. Download python-novice-inflammation-data.zip and move the file to
this folder.

3. If it’s not unzipped yet, double-click on it to unzip it. You should
end up with a new folder called data.

4. You can access this folder from the Unix shell with:

$ cd && cd Desktop/python-novice-inflammation/data

Launching Jupyter Notebook

There are several ways that we can use Python. We’re going to start
with a tool called Jupyter Notebook that runs in the browser. In a shell
window enter these commands:

$ cd

$ cd Desktop/python-novice-inflammation/data

$ jupyter notebook

The shell window is now running a local web server for you. Don’t close
it. You will need to open another shell window to do other command line
things. Your browser should open to an ”Jupyter: Notebook” page
showing a list of directories.

Analyzing patient data

1. Explain what a library is, and what libraries are used for.

2. Load a Python library and use the things it contains.

3. Read tabular data from a file into a program.

4. Assign values to variables.

5. Select individual values and subsections from data.

• import numpy
• numpy.loadtxt(fname=

delimiter=)
• weight kg = 55
• print(’weight in kg:’,

weight kg)
• weight lb = 2.2 *

weight kg

• type(data)

• data.shape

• data[0,0], data[0:1,0:1]

• data[0:10:2,1]

• data[:3,36:]

Analyzing Patient Data cont’d

6. Perform operations on arrays of data.

7. Display simple graphs.

• data.mean()

• data.std()

• data.mean(axis=0)

• %matplotlib inline

• from matplotlib import
pyplot

• pyplot.imshow(data)

• pyplot.show()

•
pyplot.plot(ave inflammation)

• import matplotlib import
pyplot as plt

• plt.subplot(1,3,1)

• plt.ylabel(’average’)

• plt.show()

Operations across an axis

Exercise

Create a single plot showing 1) the mean for each day and 2) the
mean + 1 standard deviation for each day and 3) the mean - 1
standard deviation for each day.

Repeating actions with loops

1. Explain what a for loop does.

2. Correctly write for loops to repeat simple calculations.

3. Trace changes to a loop variable as the loop runs.

4. Trace changes to other variables as they are updated by a for
loop.

• for char in word: • len(’aeiou’)

Python has a built-in function called range that creates a list of
numbers: range(3) produces [0, 1, 2], range(2, 5) produces [2, 3,
4], and range(2, 10, 3) produces [2, 5, 8]. Using range, write a
loop that prints the first three natural numbers:

1

2

3

Python has a built-in function called range that creates a list of
numbers: range(3) produces [0, 1, 2], range(2, 5) produces [2, 3,
4], and range(2, 10, 3) produces [2, 5, 8]. Using range, write a
loop that prints the first three natural numbers:

One solution:
for num in range(1,4,1):

print(num)

Exponentiation is built into Python:

print(5**3)

125

Write a loop that calculates the same result using multiplication
(without exponentiation).

Exponentiation is built into Python:

print(5**3)

125

Write a loop that calculates the same result using multiplication
(without exponentiation)
One possible answer:
ans=1

for ii in range(1,4,1):

ans=ans*5

print(ans)

Storing Multiple Values in Lists

Learning Goals

1. Explain what a list is.

2. Create and index lists of simple values.

Lesson Commands

• odds = [1, 3, 5, 7]

• print(odds[0], odds[-1])

• for number in odds:

• names[1] = ’Darwin’

• odds.append(11)

• del odds[0]

• odds.reverse()

Exercise

Turn a String into a List

Use a for loop to convert the string ’hello’ into a list of letters:
[’h’, ’e’, ’l’, ’l’, ’o’]

Hint: You can create an empty list like this:
my list = []

Storing Multiple Values in Lists

Learning Goals

1. Explain what a list is.

2. Create and index lists of simple values.

Lesson Commands

• odds = [1, 3, 5, 7]

• print(odds[0], odds[-1])

• for number in odds:

• names[1] = ’Darwin’

• odds.append(11)

• del odds[0]

• odds.reverse()

Analyzing Data from Multiple Files

Learning Goals

1. Use a library function to get a list of filenames that match a
simple wildcard pattern.

2. Use a for loop to process multiple files.

Lesson Commands

• import glob

• filenames = glob.glob(’*.csv’)

• filenames[0:3]

Making Choices

Learning Goals

1. Write conditional statements including ‘if‘, ‘elif‘, and ‘else‘
branches.

2. Correctly evaluate expressions containing ‘and‘ and ‘or‘.

Lesson Commands

• if num > 100:

• else:

• if num > 0:

• elif num == 0:

• and

• or

Python if/else Flowchart

Exercise

How Many Paths?

What will be printed if you run this code:
if 4 > 5:

print(’A’)

elif 4 == 5:

print(’B’)

elif 4 < 5:

print(’C’)

1. A

2. B

3. C

4. B and C

Why did you pick your answer?

Exercise

Close Enough

Work with your partner to write some code that will print True if
the value of variable a is within 10% of the value of variable b and
False otherwise. Test your code for positive values, negative
values, and values that span zero.

Making Choices

Learning Goals

1. Write conditional statements including ‘if‘, ‘elif‘, and ‘else‘
branches.

2. Correctly evaluate expressions containing ‘and‘ and ‘or‘.

Lesson Commands

• if num > 100:

• else:

• if num > 0:

• elif num == 0:

• and

• or

Creating Functions - Defining a Function

Learning Goals

1. Explain why we should divide programs into small,
single-purpose functions.

2. Define a function that takes parameters.

3. Return a value from a function.

Example Code

• def fahr_to_kelvin(temp):

return ((temp - 32) * (5/9)) + 273.15

• def kelvin_to_celsius(temp):

return temp - 273.15

• def fahr_to_celsius(temp):

temp_k = fahr_to_kelvin(temp)

result = kelvin_to_celsius(temp_k)

return result

Exercise

Write a function called analyze that takes a filename as a
parameter and displays the three graphs produced in the previous
lesson, i.e., analyze(’inflammation-01.csv’) should produce the
graphs already shown, while analyze(’inflammation-02.csv’) should
produce corresponding graphs for the second data set. Hint: a
function can just “do” something. It doesn’t necessarily need to
return anything.

Solution

def analyze(filename):

data = np.loadtxt(fname=filename, delimiter=’,’)

fig = plt.figure(figsize=(10.0, 3.0))

axes1 = fig.add_subplot(1, 3, 1)

axes2 = fig.add_subplot(1, 3, 2)

axes3 = fig.add_subplot(1, 3, 3)

axes1.set_ylabel(’average’)

axes1.plot(data.mean(axis=0))

axes2.set_ylabel(’max’)

axes2.plot(data.max(axis=0))

axes3.set_ylabel(’min’)

axes3.plot(data.min(axis=0))

fig.tight_layout()

plt.show(fig)

Defining a Function

def detect_problems(filename):

data = np.loadtxt(fname=filename, delimiter=’,’)

if data.max(axis=0)[0] == 0 and data.max(axis=0)[20] == 20:

print(’Suspicious looking maxima!’)

elif data.min(axis=0).sum() == 0:

print(’Minima add up to zero!’)

else:

print(’Seems OK!’)

Testing and Documentation

Learning Goal

3. Test and debug a function.

Example Code

• def centre(data, desired):

return (data - data.mean()) + desired

• z = numpy.zeros((2,2))

• print(centre(z, 3))

• print(data.std() - centred.std())

• def center(data, desired):

’’’Return a new array containing the original data

centered around the desired value.’’’

return (data - data.mean()) + desired

• help(centre)

Defining Defaults

Learning Goals

6. Set default values for function parameters.

Example Code

• def center(data, desired = 0):

• def display(a=1, b=2, c=3):

print(’a:’, a, ’b:’, b, ’c:’, c)

print(’no parameters:’)

display()

print(’one parameter:’)

display(55)

print(’two parameters:’)

display(55, 66)

• help(numpy.loadtxt)

Exercise

“Adding” two strings produces their concatenation: ’a’ + ’b’ is
’ab’. Write a function called fence that takes two parameters
called original and wrapper and returns a new string that has the
wrapper character at the beginning and end of the original. A call
to your function should look like this:

print(fence(’name’, ’*’))

name

Exercise

“Adding” two strings produces their concatenation: ’a’ + ’b’ is
’ab’. Write a function called fence that takes two parameters
called original and wrapper and returns a new string that has the
wrapper character at the beginning and end of the original. A call
to your function should look like this:

print(fence(’name’, ’*’))

name

Solution

def fence(original, wrapper):

‘‘‘Returns a string with charcter wrapper added to the

beginning and end of string original.‘‘‘

return wrapper + original + wrapper

Tracebacks and Exceptions

Learning Goals

1. Read a traceback, and determine the following relevant pieces
of information:

I The file, function, and line number on which the error occurred
I The type of the error
I The error message

2. Describe the types of situations in which the following errors
occur:

I SyntaxError and IndentationError
I NameError
I IndexError
I FileNotFoundError

Exercise

Does this code raise an exception? If so, what is the name of the
exception?

for x in range(10, -10, -1):

print(’inverse of’, x, ’is’, 1/x)

Can you modify the code so that it does what is intended, but
avoids the exception?

Try/Except Blocks

Learning Goals

1. Write error handling Python code using try and except

statements.

Lesson Commands

try:

something that might go wrong

except SomeError:

handle the error

Command-line programs

Learning goals

1. Use the values of command-line arguments in a program.

2. Handle flags and files separately in a command-line program.

3. Read data from standard input in a program so that it can be
used in a pipeline.

Commands and functions
sys.version

sys.argv

sys.stdin

Switching to shell commands

$ in front of a command that tells you to run that command in the
shell rather than the Python interpreter

• Rewrite readings.py so that it uses -n, -m, and -x instead
of --min, --mean, and --max respectively. Is the code easier
to read? Is the program easier to understand?

• Separately, modify readings.py so that if no action is given
it displays the means of the data.

