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Estas notas no abarcan el temario completo del curso Oceanografía Dinámica I (Posgrado en 

Oceanografía Física, CICESE); solo comprenden los temas que impartí en el cuatrimestre 2026-I. 

Las notas se irán completando conforme avance el cuatrimestre. La idea tampoco es que sean un 

libro ni mucho menos, solo son mi apoyo para la clase.

Los subtemas no los escogí yo, así viene el temario.
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1 Repasos

1.1 Un repaso de matemáticas

1.1.1 Conceptos vectoriales

1. Un vector tiene dirección y magnitud y puede ser descrito por una flecha que apunta en la 

dirección asignada de tamaño igual a su magnitud (Figura 1).

Faltan los dibujitos del pizarrón

2. Un vector se representa en coordenadas cartesianas como 𝒗 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘̂, donde 𝑎, 𝑏, 𝑐 son 

las componentes en las direcciones 𝑥, 𝑦, 𝑧 del vector 𝒗.

1. Las entidades 𝑖̂, 𝑗, 𝑘̂ también son vectores que apuntan en las direcciones 𝑥, 𝑦, 𝑧, respecti

vamente, y tienen magnitud 1.

2. Los vectores unitarios ̂𝑖, 𝑗, 𝑘̂ forman una base.

3. La magnitud de un vector es su “longitud”, y está dada por



‖𝒗‖ = √𝑎2 + 𝑏2 + 𝑐2

(norma).

Ejercicio: Dado el vector 𝑗 = 0̂𝑖 + 1𝑗 + 0𝑘̂, muestra que ‖𝑗‖ = 1.

4. El producto punto entre dos vectores 𝒗1 = 𝑎1 𝑖̂ + 𝑏1𝑗 + 𝑐1𝑘̂ y 𝒗2 = 𝑎2 𝑖̂ + 𝑏2𝑗 + 𝑐2𝑘̂ se define 

como:

𝒗1 ⋅ 𝒗2 = 𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2.

1. El producto punto es un escalar.

2. El valor del producto punto es ‖𝒗1‖ ‖𝒗2‖ cos(𝜃), donde 𝜃 es el ángulo entre los vectores.

3. El producto punto de un vector con otro es la proyección del primer vector en el segundo 

multiplicado por la magnitud del segundo.

4. Cualquier vector puede normalizarse utilizando su magnitud para convertirse en un vector 

unitario (de magnitud 1):

𝒖 = 𝒗
‖𝒗‖

= 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘̂√
𝑎2 + 𝑏2 + 𝑐2

.

5. El producto punto de cualquier vector con un vector unitario es la proyección de ese vector en 

la dirección del vector unitario (piensa en la sombra que generaría una lámpara en el plano de 

los dos vectores que alumbra perpendicularmente al vector unitario).

6. El producto cruz entre dos vectores es un vector y puede escribirse como el determinante:

𝒗1 × 𝒗2 = det

(

 𝑖̂
𝑎1
𝑎2

𝑗
𝑏1
𝑏2

𝑘̂
𝑐1
𝑐2)



= (𝑏1𝑐2 − 𝑐1𝑏2)̂𝑖 − (𝑎1𝑐2 − 𝑐1𝑎2)𝑗 + (𝑎1𝑏2 − 𝑎2𝑏1)𝑘̂.

7. La magnitud del producto cruz es

‖𝒗1 × 𝒗2‖ = ‖𝒗1‖ ‖𝒗2‖ sin(𝜃),

donde 𝜃 es el ángulo entre los vectores.

8. La dirección del producto cruz es perpendicular a los dos vectores originales, o equivalente

mente, perpendicular al plano sobre el que yacen los dos vectores originales (¡Recuerda la regla 

de la mano derecha! Ésta será muy importante para decirnos en qué dirección giran los flujos).

1.1.2 Operadores vectoriales

1. El gradiente de una función 𝑓(𝒓), donde 𝒓 = (𝑥, 𝑦, 𝑧), se define como

∇𝑓 = 𝜕𝑓
𝜕𝑥

𝑖̂ + 𝜕𝑓
𝜕𝑦

𝑗 + 𝜕𝑓
𝜕𝑧

𝑘̂.

2. El gradiente es un vector, pero en este caso la función 𝑓  no es un vector.

3. El gradiente es función de las coordenadas espaciales.



4. Cada término del gradiente es la tasa de cambio en una dirección dada, asumiendo que no 

cambiamos de posición respecto a las otras dos coordenadas. Por ejemplo, considera que 

hay una fábrica que produce un olor sulfuroso que disminuye conforme nos alejamos de la 

fábrica. Una persona en 𝐴 experimenta una tasa de reducción del olor relativamente grande 

conforme se mueve en dirección 𝑥, pero una tasa de reducción relativamente pequeña si se 

mueve en dirección 𝑦. Por lo tanto, la componente 𝑥 del gradiente es relativamente grande y 

la componente 𝑦 del gradiente es más pequeña.

5. Ejercicio:

• Asume que en el ejemplo anterior de la fábrica el olor disminuye con la distancia de acuerdo 

a la ecuación

𝑂 = 𝐴
𝑟2
,

donde

𝑟 = √𝑥2 + 𝑦2.

Da la ecuación para el gradiente para cualquier punto (𝑥, 𝑦), asumiendo que el origen (0, 0) 
está en el centro de la fábrica.

• Evalúa el gradiente en el punto (2, 0). ¿Cómo se comparan las componentes en ̂𝑖 y 𝑗 y cómo 

ilustran el hecho de que el olor disminuye más rápido si nos movemos en 𝑥 que en 𝑦?

6. La ecuación 𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝒓) = 𝐶 , donde 𝐶 es una constante, define una superficie en el 

espacio.

7. El gradiente de una función 𝑓(𝑥, 𝑦, 𝑧) evaluado en un punto específico (𝑥0, 𝑦0, 𝑧0) es un vector 

perpendicular a la superficie 𝑓(𝑥, 𝑦, 𝑧) = 𝐶 que pasa por el punto (𝑥0, 𝑦0, 𝑧0).

8. La velocidad de un objeto es una cantidad vectorial cuya magnitud es la rapidez del objeto y 

su dirección es la dirección de movimiento del objeto.

9. El operador gradiente puede verse como un vector,

∇ = 𝜕
𝜕𝑥

𝑖̂ + 𝜕
𝜕𝑦

𝑗 + 𝜕
𝜕𝑧

𝑘̂.

Por lo que el gradiente de una función es el operador gradiente aplicado a esa función.

10. La divergencia de un vector 𝒗 (como la velocidad, por ejemplo) es el producto punto del 

operador gradiente con el vector:

∇ ⋅ 𝒗 = 𝜕𝑣1
𝜕𝑥

+ 𝜕𝑣2
𝜕𝑦

+ 𝜕𝑣3
𝜕𝑧

.

11. La divergencia es una cantidad escalar porque es un producto punto.

12. La divergencia del gradiente de una función se conoce como el operador Laplaciano y también 

es una cantidad escalar:



∇ ⋅ (∇𝑓(𝒓)) ≡ ∇2𝑓(𝒓) = 𝜕2𝑓
𝜕𝑥2

+ 𝜕2𝑓
𝜕𝑦2

+ 𝜕2𝑓
𝜕𝑧2

.

Así, el operador Laplaciano es:

∇2𝑓(𝒓) = 𝜕2𝑓
𝜕𝑥2

+ 𝜕2𝑓
𝜕𝑦2

+ 𝜕2𝑓
𝜕𝑧2

.

13. Interpretación física de la divergencia

14. El rotacional de un vector es el producto cruz del operador gradiente con el vector:

∇× 𝒗 = det

(



𝑖̂
𝜕
𝜕𝑥
𝑣1

𝑗
𝜕
𝜕𝑦
𝑣2

𝑘̂
𝜕
𝜕𝑧
𝑣3)

.

15. Interpretación física del rotacional

16. Ejercicios:

Asume que 𝑓  es una función escalar y 𝒗 un vector. ¿Cuáles de las siguientes operaciones son 

válidas? Para las operaciones válidas di si el resultado será un vector o un escalar.

1. ∇× 𝒗
2. ∇× 𝑓
3. ∇× (∇𝑓)
4. ∇× (∇ ⋅ 𝒗)
5. ∇(∇2𝑓)
6. ∇ ⋅ (∇2𝑓)
7. (∇𝑓) × (∇𝑓)
8. (∇ ×∇) ⋅ 𝒗

1.1.3 Teoremas integrales

1. Teorema de Gauss o de la divergencia

Sea 𝑉  una región en el espacio con frontera 𝜕𝑉 . El teorema de Gauss dice que la integral sobre 

el volumen de la divergencia ∇ ⋅ 𝑭  del campo 𝑭  sobre el volumen 𝑉  y la integral de superficie 

de 𝑭  sobre la frontera 𝜕𝑉  de 𝑉  están relacionadas por

∫
𝑉
∇ ⋅ 𝑭𝑑𝑉 = ∫

𝜕𝑉
𝑭 ⋅ 𝑑𝒂.

Físicamente, esto quiere decir que si no hay fuentes o sumideros del campo 𝑭  dentro de la 

región del espacio 𝑉 , la densidad del campo en esa región del espacio solo puede cambiar si 

hay un flujo hacia adentro o hacia afuera de la región a través de la frontera 𝜕𝑉 .

2. Teorema de Stokes

El teorema de Stokes relaciona la integral sobre una superficie abierta con la integral de línea 

alrededor de la curva frontera de esa superficie. Sea 𝐴 una superficie abierta cuya curva frontera 

es 𝐶 . Escojamos un lado de la superficie para ser el exterior. Sea 𝑑𝒔 un elemento de la curva 

frontera cuya magnitud es la longitud del elemento y cuya dirección es tangente a la curva. El 



sentido positivo de la tangente es tal que, cuando lo vemos desde el exterior de la superficie en 

la dirección de la tangente, el interior queda a la izquierda. Entonces el teorema establece que

∫
𝐴
(∇ × 𝒖) ⋅ 𝑑𝑨 = ∫

𝐶
𝒖 ⋅ 𝑑𝒔.

Esto significa que la integral de superficie del rotacional del campo vectorial 𝒖 es igual a la 

integral de línea de 𝒖 alrededor de la curva frontera. La integral de un vector 𝒖 alrededor de 

una curva cerrada 𝐶 se conoce como “la circulación de 𝒖 en 𝐶”.

Ejercicio corto:

1. Si 𝒓(𝑡) = 𝑥(𝑡)̂𝑖 + 𝑦(𝑡)𝑗, escribir la velocidad 𝒗, y la aceleración 𝒂.

2. Demostrar que 𝑢̂ ⋅ ̇𝑢̂ = 0 para |𝑢̂| = 1.

1.2 Movimiento circular uniforme (MCU) y aceleración centrípeta
El movimiento circular uniforme ocurre cuando una partícula se mueve sobre una circunferencia 

de radio constante 𝑅 con rapidez constante 𝑣. La dirección de la velocidad cambia continuamente, 

aunque su magnitud permanezca constante.

Algunas relaciones básicas son:

• Periodo: 𝑇  (tiempo en dar una vuelta)

• Frecuencia: 𝑓 = 1
𝑇

• Velocidad angular: 𝜔 = 2 𝜋
𝑇 = 2𝜋𝑓

• Rapidez: 𝑣 = 𝜔𝑅

En forma vectorial, si la rotación es alrededor de un eje definido por el vector 𝝎, la velocidad 

angular está dada por:

𝒗 = 𝝎 × 𝒓.

En MCU siempre hay aceleración porque la dirección de 𝒗 cambia. Esa aceleración apunta hacia 

el centro (radial hacia adentro).

1.2.1 Ejercicio

Una partícula se mueve en el plano 𝑥𝑦 con 𝒓 = 𝑅(cos(𝜔𝑡), sin(𝜔𝑡), 0).
1. Deriva 𝒗 y verifica que |𝒗| es constante.

2. Muestra que 𝒗 es perpendicular a 𝒓.

1.3 Aceleraciones radiales (en movimiento curvilíneo)
En un movimiento sobre el plano, es útil descomponer la aceleración en:

• una componente tangencial (cambia la rapidez)

• una componente radial o normal (cambia la dirección)

Si el radio de curvatura instantáneo es 𝑅 y la rapidez es 𝑣:

𝑎𝑟 =
𝑣2

𝑅
.

En coordenadas polares (𝑟, 𝜃), la aceleración general es:



𝒂 = (𝑑 ̇𝑟 − 𝑟 ̇𝜃2)𝑟̂ + (𝑟𝑑 ̇𝜃 + 2 ̇𝑟 ̇𝜃)𝜃.

Para MCU: ̇𝑟 = 0, 𝑑 ̇𝑟 = 0, ̇𝜃 = 𝜔, 𝑑 ̇𝜃 = 0:

𝒂 = −𝑟𝜔2𝑟̂.

La aceleración radial existe aunque la rapidez sea constante; refleja el cambio de dirección de la 

velocidad.

1.3.1 Ejercicio 1 (curvatura conocida)

Un auto toma una curva de radio 𝑅 = 50 m a 𝑣 = 15 m/s.

1. Calcula la aceleración radial.

2. Interpreta qué significa físicamente.

Solución:

𝑎𝑟 =
𝑣2

𝑅
= 152

50
= 225

50
= 4.5 m/s2.

Interpretación: es la aceleración requerida para “doblar”, apuntando al centro de la curva.

1.3.2 Ejercicio 2 (polares → MCU)

Sea 𝑟(𝑡) = 10 m constante y 𝜃(𝑡) = 0.2𝑡 (rad).

1. Identifica 𝜔.

2. Calcula 𝒂 en polares.

Solución:

𝜔 = 0.2 rad/s.

𝒂 = −𝑟𝜔2𝑟̂ = −10(0.2)2𝑟̂ = −0.4𝑟̂ m/s2.

1.4 Fuerza centrípeta
La fuerza centrípeta es la fuerza neta radial hacia el centro necesaria para mantener el movimiento 

circular (o curvilíneo) con radio de curvatura 𝑅.

Por segunda ley de Newton:

∑𝐹𝑟 = 𝑚𝑎𝑟 = 𝑚𝑣2

𝑅
= 𝑚𝜔2𝑅.

“Centrípeta” no es un tipo nuevo de fuerza: puede ser tensión, fricción, gravedad, empuje, etc. Lo 

“centrípeto” describe la dirección de la fuerza neta.

1.5 Momento angular
Para una partícula de masa 𝑚, el momento angular 𝑳 se define como:

𝑳 = 𝒓 × 𝒑 = 𝒓 × (𝑚𝒗).

cuya dirección es perpendicular al plano formado por 𝒓 y 𝒗 y su magnitud es 𝐿 = 𝑚𝑟𝑣 sin(𝜃), donde 

𝜃 es el ángulo entre 𝒓 y 𝒗.

La torca (momento de fuerza) respecto al origen es:



𝝉 = 𝒓 × 𝑭 .

y satisface:

𝝉 = 𝑑𝑳
𝑑𝑡

.

El momento angular mide “cuánta rotación” tiene el movimiento respecto a un punto. Cambia sólo 

si hay una torca externa neta (análogo a la fuerza y el momento lineal).

1.6 Conservación del momento angular
Si la torca externa neta sobre un sistema respecto a un punto es cero:

𝝉{𝑒𝑥𝑡} = 0 ⇒ 𝑑𝑳
𝑑𝑡

= 0 ⇒ 𝑳 = cte.

1.6.1 Caso típico: fuerza central

Si 𝑭  siempre es paralela a 𝒓 (fuerza radial), entonces:

𝝉 = 𝒓 × 𝑭 = 0,

y por lo tanto 𝑳 se conserva. Geométricamente, si 𝑳 es constante, el movimiento ocurre en un 

plano perpendicular a 𝑳.

1.6.2 Ejemplo 1 (partícula en fuerza central)

Una partícula se mueve bajo una fuerza 𝑭 = 𝑓(𝑟)𝑟̂.
1. Muestra que 𝝉 = 0.

2. Concluye que 𝑳 es constante.

Solución: Como 𝑭 ∥ 𝒓:

𝝉 = 𝒓 × 𝑭 = 0⟶ 𝑑𝑳
𝑑𝑡

= 0.

1.6.3 Opcionales

• MCU: Si 𝑅 se duplica con 𝜔 constante, ¿cómo cambian 𝑣 y 𝑎𝑟?
• Aceleración radial: Une ciclista describe una curva con 𝑅 = 20 m y 𝑎𝑟 = 3 m/s^2. Encuentra 𝑣.

• Fuerza centrípeta: ¿Qué 𝜇𝑠 se requiere para tomar una curva de radio 𝑅 a velocidad 𝑣 sin 

derrapar?

• Momento angular: Calcula 𝑳 para 𝒓 = (1, 2, 3) y 𝒗 = (4, 0,−1) (masa 𝑚 simbólica).

• Explica por qué un satélite en una órbita elíptica se mueve más rápido en perigeo que en apogeo.
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